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Abstract

People use different size modifiers to refer to different object
sizes; “the long table” is likely to be a different table from
“the small table”. However, the details influencing the selec-
tion of size modifier have not yet been uncovered. When is
something “long”, and when is something “small”? We in-
troduce a connection between the visible dimensions of ob-
jects and the kinds of language people use to refer to them.
First, we conduct an experiment to elicit size-denoting modi-
fiers from images of real world objects. We find that we are
able to effectively model the relationship between dimensional
features and modifier choice using decision trees. The images
are then used as input to an object segmentation algorithm,
and we compare how well we can predict speakers’ behavior
using the real world measurements of the pictured objects and
the image pixel-based measurements. We find that real world
measurements are the best predictors of modifier choice, sug-
gesting that people infer real world size features from images.
However, automatically extracted pixel measurements do per-
form relatively well at predicting modifier choice, offering a
potential connection between computer vision and natural lan-
guage. When speaker identity is taken into account, modifier
choice can be predicted with even greater accuracy (around
75%), and the difference between automatically extracted and
real world measurements is no longer significant.

Introduction
Advances in the fields of natural language generation, image
processing and computer vision have begun to make it pos-
sible to model the connection between visual properties and
language. Given a set of images and corresponding descrip-
tions, we can create a mapping between image features and
language features (Kulkarni et al., 2011). These language fea-
tures can then be analyzed by a natural language generation
(NLG) system to produce human-like expressions.

We introduce preliminary work on such a system, focus-
ing on generating reference to an object’s SIZE. Examining
the SIZE property in isolation gives us a tractable problem to
solve within the larger problem of moving from visual input
to natural language output. This is also in line with current
research in the generation of referring expressions (GRE),
where many algorithms are built to explicitly handle a SIZE
property (Dale & Reiter, 1995; Krahmer, van Erk, & Ver-
leg, 2003). Psycholinguistic research has also demonstrated
that size is a primary aspect of natural reference to objects
(Landau & Jackendoff, 1993; Sedivy, 2003; Brown-Schmidt
& Tanenhaus, 2006).

One complication to this approach is that current philos-
ophy in GRE treats an input property as a single feature and
does not provide mechanisms for reasoning about how a prop-
erty may involve interacting features. In Dale and Reiter
(1995) and Krahmer et al. (2003), the knowledge base must
mark elements as large or small. van Deemter (2006) treats

size as a gradable property, producing size adjectives from
numerical measurements (e.g., size = 33cm). None of these
proposals do justice to the fact that size can involve a combi-
nation of dimensions; a turtle may be fat, or big, but seldom
tall. Addressing this issue allows us to connect the visible
dimensions of objects to size language. We can analyze how
features related to an object’s height and width predict size
modifier choice, and apply this to a GRE algorithm.

To find out how an algorithm should choose between differ-
ent size-denoting modifiers based on the heights and widths
of objects, we conducted an experiment to elicit descriptions
of real world objects (Mitchell, van Deemter, & Reiter, 2011).
The present paper builds a discriminative machine learning
model from the resulting corpus. The input to the model is
the height and width of each object, and the output is the type
of size modifier to generate. The size types predicted include
a width/height type, corresponding to surface forms such as
“tall” and “thin”, an overall size type, corresponding to sur-
face forms such as “big” and “small”, and a type for expres-
sions without size modification (e.g., “the square brownie”).

We compare inputs to the model based on real world mea-
surements, image pixel measurements extracted by hand,
and image pixel measurements extracted using the semi-
supervised SIOX algorithm (Friedland, Jantz, & Rojas,
2005). The semi-supervised approach connects modifier
choice to the output of an image processing/computer vision
technique known as object segmentation, providing a possible
link between natural language and computer vision. We find
that this approach works well, with an accuracy of 64.95% on
unseen test images, but does not perform as well as the mod-
els built from real world measurements, which reach 69.44%
accuracy. By adding speaker label as a model feature, accu-
racy from all models improves above 75%, and the difference
between the semi-supervised approach and the real world ap-
proach is no longer significant.

We use a decision tree classifier in order to visualize how
different features affect the selection of size type. Features
that emerge with high information gain may be useful in a
hand-coded GRE algorithm, and we walk through these de-
tails in the Results section. The trees built with speaker label
also provide a concrete model of speaker variation for this
task, and we outline the different speaker clusters the model
uncovers.

This paper therefore makes three primary contribu-
tions: (1) a connection between the visual features of
a scene and the generation of natural size language;
(2) an exploration of visual features that may be use-
ful in further work on human-like GRE; and (3) a



model of speaker-dependent variation for the SIZE attribute.
Both the images and elicited expressions are available at
http://www.csd.abdn.ac.uk/˜mitchema/corpora/size.html.

Background and Motivation
Size modifiers are used to refer to dimensional properties of
objects. A modifier like “big” tends to be used in cases where
an object is large in either two or all three of its dimensions,
while modifiers like “thick” and “thin” may be applied when
an object extends in a single dimension (Landau & Jackend-
off, 1993). Size modifiers are common in visual scenes (van
Deemter, van der Sluis, & Gatt, 2006; Viethen & Dale, 2009),
and are especially prevalent when an object needs to be distin-
guished from another object of the same type (Sedivy, Tanen-
haus, Chambers, & Carlson, 1999; Brown-Schmidt & Tanen-
haus, 2006). There is some evidence that the selection of
size modifier can be predicted by using a machine learning
approach that reasons about dimensional features extracted
from a scene, such as an object’s surface area (Roy, 2002).

Previous work on determining the form of an object de-
scription using machine learning has created models that pre-
dict a wide range of properties, such as the inclusion of
color, location, etc., as well as the overall form of the noun
phrase (e.g., personal pronoun, definite description). These
approaches utilize a variety of contextual features, such as
intentional influences and conceptual pact features (Jordan &
Walker, 2005) and syntactic, semantic, and discourse features
(Poesio, 2000).

Such work does not address the fact that different speak-
ers will generate different reference within the same context
(Reiter & Sripada, 2002), which is a large factor when the
goal is to generate natural reference. This variation speaks to
the need for models that can incorporate individual speaker
profiles in generation.

In light of this, recent work in GRE has begun to use
speaker-specific constraints in order to improve the perfor-
mance of reference algorithms (Fabbrizio, Stent, & Banga-
lore, 2008). In work most closely related to the current study,
Viethen and Dale (2010) use a decision tree classifier to pre-
dict the set of attributes different speakers will use to refer to
geometric shapes. The results are mixed, largely due to the
lack of data for many of the proposed classes; however, there
is a significant increase in accuracy when speaker identity is
included as a model feature.

In the current approach, we examine how well a small set
of objective visual features perform at predicting the type of
size modifier selected to refer to everyday objects. We include
the size-based features of surface area and height-to-width ra-
tio suggested by Roy (2002) to be correlated with distinct size
adjectives. In contrast to earlier work on machine learning for
generating object descriptions, the images are of real objects,
the features do not rely on detailed annotation,1 and the set

1In the semi-supervised approach we discuss, the features are
extracted from images, but the ability to recognize such features in
a scene is limited by how well an object segmentation algorithm
works; we control this aspect by looking at clear, uncluttered scenes.

of predicted classes is kept small. This narrows the machine
learning task from earlier related work and avoids data spar-
sity issues. At the same time, it provides a relatively clear
connection between the size aspects of a scene, such as the
height and width of a target object, and natural referring ex-
pression generation.

It is important to note that at both ends of this connec-
tion, the problem is reduced to basic levels. The visual in-
put of images is an obvious application for computer vision
that utilizes object recognition. However, object recognition
can only return regions of an image where an object is likely
to exist, not the specific details of the object’s dimensions
(Walther, Itti, Riesenhuber, Poggio, & Koch, 2002; Lowe,
2004). To reason about an object’s shape, an object seg-
mentation approach is needed, with the general location of
the object already specified. Work linking object recogni-
tion to object segmentation is still quite new (e.g., Zheng,
Yuille, and Tu (2010)). Our approach therefore compares real
world measurements to measurements extracted from semi-
supervised object segmentation.

At the other end of the vision-language connection is GRE,
a well-developed subfield within natural language generation.
However, GRE has focused on categorizing which subset of
scene attributes may be selected to identify an object. In this
paper, we take a more fine-grained approach by exploring the
use of a single attribute – SIZE – and several of its possible
forms. We hope that this research provides a basic foundation
from which to raise the complexity at both ends.

Procedure
Experiment
We manipulated the height and width of boards, books,
brownies, and sponges. Each object appeared to the right
of a comparator object of the same type (see Figure 1), and
could appear in 24 different sizes, systematically varied along
height and width axes: larger (++, axis 5/4 size of compara-
tor), a little larger (+, axis 11/10 size of comparator), no dif-
ference (0, axis same size as comparator), a little smaller (-,
axis 10/11 size of comparator) and smaller (- -, axis 4/5 size
of comparator). A total of 96 images were used for this study,
split in a Latin square design among three groups. Further de-
tails on this experiment are provided in Mitchell et al. (2011).
For this paper, we report on results for an additional set of
414 participants.

For each expression, we annotate the modifiers as pick-
ing out individuating axes (I) – words like “tall” and “thin” –
overall axes (O) – words like “big” and “small” – or none (N).
These serve as the class labels for each image-based feature
vector in the training data. Example expressions are given in
Figure 2. The full list of size-denoting words for each class
label is given in Table 1. Inter-annotator agreement on a ran-
domly selected 10% of this data is high, Cohen’s κ = 0.94.2

2729 size modifiers were compared for the agreement score; 5
modifiers only labeled by one annotator are excluded.



Figure 1: Example stimuli.

Object, Cond. Expression Class
sponges, h+w- - taller sponge I
boards, h- -w++ the shorter and slightly wider

board with a diagonal top side
I

boards, h- -w- - smaller board O
brownies, h+ w- the most square brownie N

Figure 2: Example expressions for different <object,
condition> stimuli. Conditions are composed of different
measurements of the height (h) and width (w) axes.

Object Segmentation
In addition to the measurements of the real height and width
of the objects, we measure the objects’ height and width in
image pixels. We also extract such information using the
SIOX algorithm (Friedland et al., 2005), a semi-supervised
method for object segmentation. We explain this algorithm
briefly here.

The input for the SIOX algorithm consists of three user
specified regions of a given image: known background, un-
known region, and known foreground. To notate each region,
we manually outline a general selection of the location of
each object. The outer region of this selection becomes the
known background, and the inner region the unknown region.

By selecting (brushing over) parts of the object, we specify
the known foreground. Both known regions are then used in a
classification task to identify which sections of the unknown
region are background and which are foreground. The result-
ing output is an outline of the segmented object, separated
from the surrounding background.

We then store each of the segmented objects as separate
images. With this in place, an image processing tool can be
used to extract pixel height and pixel width of each object
image. We use CONJURE for this, a command-line based pro-
gram implemented within ImageMagick (Cristy, Thyssen, &
Weinhaus, 2011). Figure 3 shows an example of an image
and extracted objects.

Machine Learning
Each of the 96 images represent an <object, condition> stim-
ulus with associated features. There are a variety of size-
based visual features available from the heights and widths
extracted from the input images, listed in Table 2. These
include REFERENT FEATURES, features of the target object
alone; COMPARATOR FEATURES, features of the compara-
tor object on the left; and COMPARISON FEATURES, features
that store the difference between the referent and comparator.
These features may serve as the training/testing data in a ma-
chine learning approach where the class label in each instance

Table 1: Root words for size modifier labels.

Label Count Vocabulary
I 3307 breadth, broad, deep, elongated, fat, flat,

height, high, length, long, low, narrow,
short, skinny, slender, slim, squat, stout,
tall, thick, thin, wide, width

O 2614 big, large, little, shrunk, slight, small
N 703 - -

→

Figure 3: Example of original and extracted objects.

corresponds to the size type (I, O, or N) used by a particular
speaker for a particular image. The classification problem is
therefore to use the visual features to predict the size type
used by each speaker for each image.

We use C4.5 decision tree classifiers as implemented
within Weka (Hall et al., 2009) with default parameter set-
tings. Performance is evaluated using leave-one-out vali-
dation, where the set of results from all speakers for each
<object, condition> stimulus (each image) is tested against
a model trained on all other objects and conditions.

Results
Results are presented in Table 3, listed as the percentage of
correct predictions, and in italics, the percentage of testing
folds where the predicted type was found in the majority of
responses. We compare results based on the three kinds of
visual measurements:

1. Automatically extracted image measurements (Auto): the
pixel measurements extracted from the segmented objects
within the pictures.

2. Gold-standard image measurements (Gold): pixel mea-
surements measured by hand from the objects within the
pictures.

3. Real World measurements (Real): the actual measurements
of the pictured objects.

Accuracy is computed as the number of correct classifica-
tions divided by the number of classified instances, over all
testing folds. If n is a testing fold in the set of testing folds
N, ti is the true class label of each instance i, and pi is the
predicted class label, then:

Accuracy =
∑

i∈n∈N
(pi=ti)

∑
n∈N
|n|

Accuracy based on the automatically extracted pixel mea-
surements indicates how well the system connecting object
segmentation to reference generation performs. Accuracy
based on gold standard and real world measurements provide



Table 2: Visual features extracted from images.

# ID Description
REFERENT FEATURES
1 type object type
2 h height of target
3 w width of target
4 ratio target height:width
5 surfar surface area of target
6 hwdf target height - target width
COMPARATOR FEATURES
7 dh height of comparator
8 dw width of comparator
9 drat comparator height:width

10 dhdwdf comparator height - comparator width
COMPARISON FEATURES
11 hdhdf target height - comparator height
12 wdwdf target width - comparator width
13 ratdf target ratio - comparator ratio

Table 3: Accuracy across folds.

Auto Gold Real Oracle Baseline
Without 64.95% 62.80% 69.44% 75.88% 49.93%
Speaker 65.63% 65.63% 75.00% 88.54% 47.92%

With 75.33% 77.20 % 76.95% 100% 64.05%
Speaker 91.67% 96.88% 95.83% 100% 71.88%

a comparison indicating how well the system performs when
the size data is provided manually.

The system connecting object segmentation to natural ref-
erence generation (Auto) performs relatively well, predict-
ing 64.95% of response types. The comparison pixel mea-
surement system (Gold) predicts 62.80% of response types,
which is not significantly different from the automated ap-
proach (paired t-test, p=0.4104).

Interestingly, even though real world measurements may
not be clear in photographs, we find that classification based
on these measurements performs significantly better than
classification based on the manually or automatically derived
pixel measurements (paired t-test, real vs. auto: p=0.0363,
real vs. gold: p=.0188). This suggests that people are good at
reasoning about size in the real world from a two-dimensional
image, and the connection between what a computer can see
and what it can talk about may be improved with more so-
phisticated techniques for geometric reasoning.

Since all testing instances in each fold are identical, differ-
ing only in class label (the size type), we implement an oracle
method to understand the upper bound of this task. This pre-
dicts the most common size type in each testing fold, which
yields 75.88% accuracy. The results can be compared against
a majority baseline that predicts the most common type from
the training data in each fold. Without speaker, the major-
ity class is always I, which is used in 3,307 of the 6,624 in-
stances; 2,614 are O, and 703 are N.

Figure 4 A shows an Auto model built over all data, without
speaker labels. We see that dhdwdf, the feature for the differ-
ence between the comparator’s height and width, is selected
as having the highest information gain. In other words, the
learning approach finds that first splitting up the data based
on the value of this feature is the optimal way to distinguish
between different size choices; when the model sees a set of
visual features for a size choice it has to guess, it will first
check whether dhdwdf is less than or equal to -47 pixels.

In this model, the features related to ratio appear as strong
predictors of size type. Both the height-to-width ratio of the
referent object and the difference in height-to-width ratio be-
tween the referent and comparator object are used early on in
the trees. This means that features of the target referent itself,
as well as features derived from the comparison between ref-
erent and comparator, play a role in which label is selected.
It also suggests that there may be a relationship between the
selected size type and how close the height and width of the
target object are to one another – for example, when the di-
mensions are far apart, individuating size modifiers may be
preferred, resulting in expressions with words like “tall” and
“thin”, but when closer together (more square-shaped), over-
all size modifiers may be preferred, resulting in expressions
with words like “big” and “small”. Further testing is neces-
sary to understand whether the behavior of these features is
reflective of human use of these features.

It is interesting that the models are not composed entirely
of comparison features, but incorporate features of the refer-
ent in isolation, such as its ratio and width. This runs counter
to much work in GRE, where algorithms usually select fea-
tures of a referent object based solely on comparison with
features of surrounding objects. This data suggest there may
also be a benefit in reasoning about the relationship between
individual features of the referent object itself before surface
realization.

Speaker-Specific Reference Generation
We next add speaker label as a feature in the data and evalu-
ate how well the classifiers perform. This provides a way to
distinguish between instances within each testing fold. The
trees built using this feature also provide a model of speaker
variation.

As shown in Table 3, accuracy improves, and this is sig-
nificant for all three learned models (Auto, Gold, and Real,
p < .001). These models outperform a majority baseline that
predicts the majority size type used by each speaker based
on the training data in each fold. The Auto models predict
75.33% of the observed size types, and predict the major-
ity type for a testing fold 91.67% of the time. This is not
significantly different from the predictions made by the Real
models (paired t-test, t = 1.685, p = 0.095). The resulting
trees have very low depth, tuning decisions to each speaker
and then using a small set of individualized features to decide
the final size type (Figure 4 B). Clear clusters emerge in this
approach, producing a concrete model of speaker variation.
Clusters with more than two speakers are given in Table 4.



A.
dhdwd f ≤ -47
| ratd f ≤ -0.097
| | wdwd f ≤ 4
| | | type = books : O
| | | type = boards : O
| | | type = brownies : O
| | | type = sponges : I
| | wdwd f > 4
| | | hdhd f ≤ 7: I
| | | hdhd f > 7: O
| ratd f > -0.097
| | ratd f ≤ 0.143
| | | ratio≤ 0.705
| | | | dhdwd f ≤ -49
| | | | | ratio≤ 0.688
| | | | | | sur f ar ≤ 41004
| | | | | | | hdhd f ≤ -14: O
| | | | | | | hdhd f > -14: I
| | | | | | sur f ar > 41004: O
| | | | | ratio > 0.688: I
| | | | dhdwd f > -49: N
| | | ratio > 0.705: O
| | ratd f > 0.143
| | | ratd f ≤ 0.152: I
| | | ratd f > 0.152
| | | | w≤ 177: O
| | | | w > 177
| | | | | w≤ 238
| | | | | | hdhd f ≤ 6: O
| | | | | | hdhd f > 6
| | | | | | | ratd f ≤ 0.245: N
| | | | | | | ratd f > 0.245
| | | | | | | | hdhd f ≤ 22: N
| | | | | | | | hdhd f > 22: I
| | | | | w > 238: O
dhdwd f > -47: I

B.
dhdwd f ≤ -47
| ratio≤ 0.674
| | spkr = A2E : 2d
| | spkr = A2J
| | | hwd f ≤ -113: 1d
| | | hwd f > -113: 2d
| | spkr = A2F : 1d
| | spkr = A32
| | | ratio≤ 0.561: 2d
| | | ratio > 0.561: 1d
| | spkr = A2T : 1d
| | spkr = AW5 : 2d
| | spkr = A37 : 2d
| | spkr = A3G : 1d
| | spkr = A94
| | | hwd f ≤ -113: 1d
| | | hwd f > -113: 2d
| | spkr = A3U
| | | dw≤ 205: N
| | | dw > 205
| | | | hdhd f ≤ 8: I
| | | | hdhd f > 8: O
| | spkr = AN3
| | | wdwd f ≤ 35: 2d
| | | wdwd f > 35: 1d
| | spkr = A34 : 2d
| | spkr = A1I : 1d
| | spkr = A35 : 2d
| | spkr = A2S
| | | dhdwd f ≤ -126: 1d
| | | dhdwd f > -126: 2d
| | spkr = A19
| | | h≤ 152: 1d
| | | h > 152: 2d
| | spkr = A3I : 1d
| | spkr = A18 : 2d

Figure 4: Pixel-based decision tree without speaker labels (A)
and a section of pixel-based tree with speaker labels (B).

Discussion
Generating human-like reference to visible, real world ob-
jects is possible by reconstructing the problem of GRE:
Rather than analyzing the SIZE property as a single dimen-
sion in feature space (<SIZE:large>), it can be analyzed as
a multi-dimensional property (<SIZE:[height:y width:x
ratio:z...] >). In this way, output from a visual analysis
may serve as input to a model that selects the most reasonable
value (including none) for the given attribute.

Without speaker labels, the models built on real world
measurements perform better than the models built on pixel
image measurements. This suggests that a connection be-
tween language generation and object segmentation can be
improved by adding a mechanism to reason about how the
two-dimensional image space maps to a three-dimensional
real world space.

The models built here point the way to further psycholin-
guistic work, such as research uncovering other factors that
affect the modifier choice made by people (perhaps, for ex-
ample, cognitive load). The features selected by the decision
trees cluster speakers into several groups, and whether these

Table 4: Speaker clusters, with count of speakers using each
feature set to select size type.

Cluster Feature Set Count
1 dhdwdf ratio ratdf 265
2 dhdwdf ratio ratdf w 36
3 dhdwdf h ratio ratdf 23
4 dhdwdf dw ratio ratdf 16
5 dhdwdf dh ratio ratdf 16
6 dhdwdf hwdf ratio ratdf 12
7 dhdwdf hdhdf ratio ratdf 9
8 dhdwdf ratio ratdf type 9
9 dhdwdf ratio ratdf wdwdf 7

features reflect the features humans use when referring to size
is an area for future research.

Conclusions
We have presented a way to generate natural reference based
on visual input, focusing on the property of SIZE. This work
illustrates that the generation of natural size modification may
be possible utilizing two abstract size types, individuating
size and overall size. By reasoning over a set of features in-
stead of a single value for the SIZE attribute, models for refer-
ence generation can be built from basic information provided
by a visual system.

We find that generating natural reference may be aided by
reasoning about features of the referent in isolation, as well
as by comparing the referent to other items in the scene. Fea-
tures related to the height-to-width ratio of objects play a key
role in predicting size type, and this may be useful for a hand-
coded algorithm that aims to generate natural reference.

Taking speaker into account significantly improves accu-
racy, with the models building decisions for individual speak-
ers. A model built from the entire dataset provides a clas-
sification of the speaker-dependent variation used in this do-
main, and we find that speakers can be neatly clustered into
9 main groups based on the dimensional features that best
predict size modifier preference. This suggests that generat-
ing human-like language can be improved by building models
for individual speakers. In a system that generates natural lan-
guage, these models can be constructed as speaker ‘profiles’
that follow different language behavior, and such profiles can
be built, for example, by clustering speakers in the training
data together.

In future work, we aim to expand the kinds of size lan-
guage the models predict, specifying more detailed classes
within the two broad size types. We also plan to develop this
approach to work with more sophisticated visual input. Com-
puter vision techniques provide rich information on many vis-
ible features, such as COLOR, MATERIAL, ORIENTATION and
TEXTURE, and using these features along with SIZE features
will allow for the generation of more complex natural expres-
sions. We hope that continuing research on the kinds of fea-



tures that image processing and computer vision provide and
the kinds of language that people produce will help to connect
a computer’s vision to its language.
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